SMART TECHNOLOGY INITIATIVES AT SONA COMSTAR

CII Smart Manufacturing Summit 2019 New Delhi

SONA COMSTAR – An Overview

Headquartered in Gurgaon, India

2100 Employees

Revenue: \$210 mn

Products: Differential

	Driveline Business	Electrical Business
Presence	India	India, China, USA, Mexico
Products	Precision Forged Gears, Differential Assemblies, E-Axles, Spur Gears	Belt Starter Generator (BSG), Starter Motors, BLDC motors, Alternators
Revenue (FY19)	\$104 mn	\$106 mn
Employees	~1200	~900
Manufacturing facilities	4+2 under commissioning	4
Certifications	IATF 16949, ISO14001, OHSAS 18001, TPM, ENMS ISO 50001	IATF 16949, ISO 14001, OHSAS 18001, ASES, Ford-Q1, JLR-Q, VQE
Major Customers	AAL, Daimler, Dana, John Deere, Linamar, Mahindra, Maruti Suzuki, TAFE, Tata Motors	Ashok Leyland, Aston Martin, Ford, Geely, JLR, Renault Nissan, Tata Motors, Volvo,
Sister Company	Sona BLW Prazisionschmiede GmbH Revenue: \$300 mn Product: Bevel Gears, Monoblock Gears 3 Plants in Germany and 1 plant in Hungary	

Our Products – A Summary

Passenger vehicles

Differential Differential bevel aears assemblies

Crown gear drive set

Precision forged speed / Transmission gear

Starter motors

BLDC Motors

48V BSG Air/Liquid/Hybrid Cooled

Alternators

Motors

Commercial vehicles

Foraed sun &

Differential bevel gears

Engaging sleeves

Ready for assembly parts for truck inter axle differential

24V Starter Motor

Off-highway vehicles

Differential bevel gears

Differential assemblies

Non-differential bevel aears

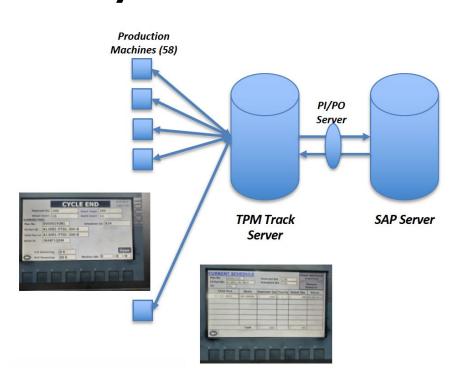
Parts for Portal Axle / Front **Wheel Drive**

Spiral Bevel Set

24V Starter Motor

Three Wheelers

Two Wheelers



Wheel

Application of Smart Technologies in SONA COMSTAR

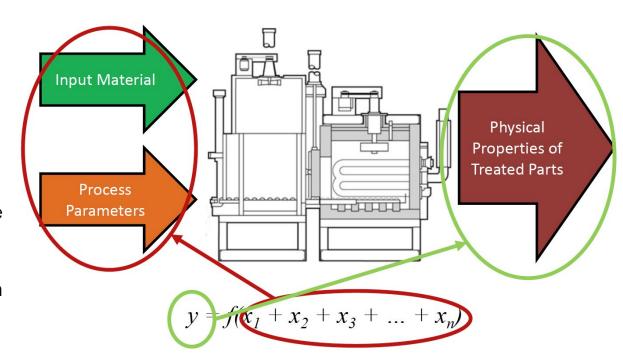
- Improving Efficiency of Assets:
 - Real-time Shop-Floor Data Capture and Analytics.
 - Inventory Tracking and Traceability.
 - Machine Analytics and Prediction.
- Improving Quality of Products:
 - Al-based Visual Inspection.
 - Automated Process Control.

Real-time Shop-floor Data Capture and **Analytics**

- About 60 machines connected to the 'TPM Track Server'.
- Communicates with the machines in real-time.
- TPM Track Server communicates with the SAP Server in real-time for planning and inventory information. Uploads production data every 30 minutes.
- Accurate and near-real-time production and downtime data is available in SAP.
- Concerned managers get alerts through text messages on their mobile phones.
- Supports Andons, analytics, and dashboards.

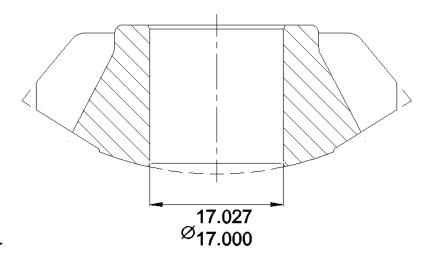
13/11/19

Al-based Visual Inspection

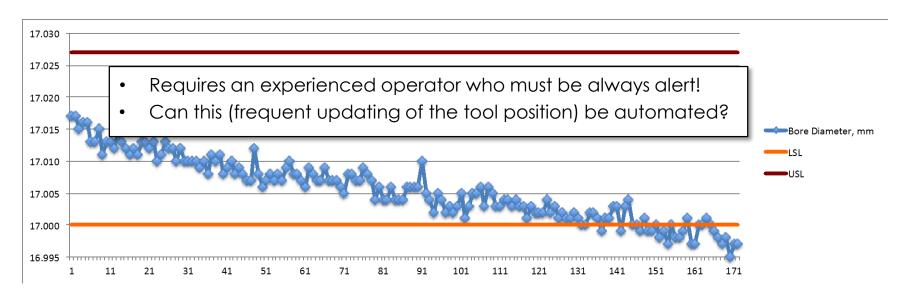


- We engage 36 skilled inspectors to visually inspect 75~80 K gears every day.
- The system under development uses convoluted neural network to detect visual defects with over 99% accuracy.
- Once implemented, we can expect:
 - Higher confidence in passed parts.
 - Reduced manpower.
 - Improvement in the performance as the system learns as customers become more demanding in their acceptance standards.

Heat Treatment Process Control

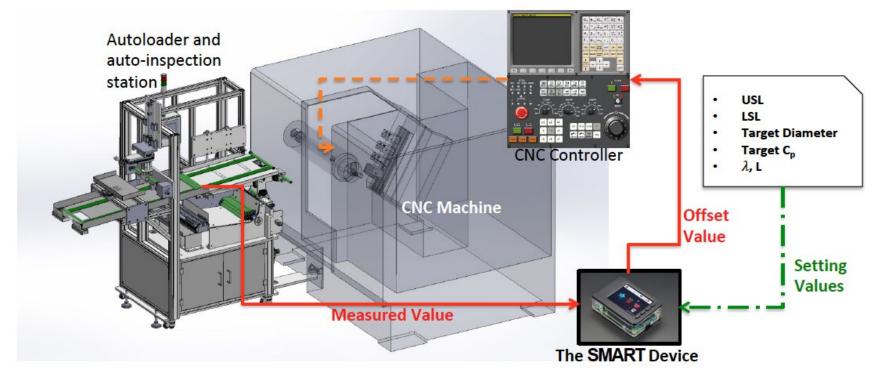

SMART TECHNOLOGY INITIATIVES | V0.0

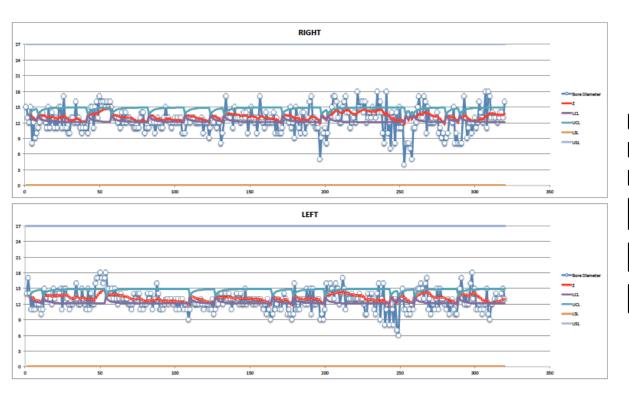
- Determination of process parameters to realize desired properties of treated parts based on the function f modelled from 10 years' historical data of x_i and y.
- Adjust the process parameters to realize consistent physical properties of the treated parts even with small variation in the input material composition.



An Use Case

- Part: Differential Bevel Gear
- Parameter: Bore Diameter
- Specification: 17^{H8} (17.000 ~ 17.027) mm
- Measurement: By air gauge, taken across the length of the bore; the minimum value taken as the measure while making sure out-of-roundness and taper is below 3μ , each.
- Machine: Muratec Twin Spindle **CNC Turning**


The Problem Statement


- The diameter of produced parts continuously reduces as a result of the tool wear.
- The operator manually enters a value—called 'offset'—in the CNC controller to correct the tool position so the parts stay within the specifications.

Solution: The SMART* Device

Results of the SMART Device

	RIGHT	LEFT
Cum Offset	18.474	13.540
Mean	12.481	12.684
Target	13.500	13.500
C _p	1.9324 1.7866	2.3526 2.2105
- pk		
Min	4.0000	6.0000
Max	18.0000	18.0000
LSL	0.0000	0.0000
USL	27.0000	27.0000

Proposed SMART 2.0

- Collect other process parameters (in real-time):
 - Ambient temperature
 - Hardness of the blank
 - Spindle motor current
 - Vibration and noise at the spindle bearing
 - Coolant flow and temperature
- Create a new model based on these additional attributes.
- Machine should also alert when the tool is due for change.
- Optimize tool life, process capability, and cycle time.

The Key Success Factors

- The modern developments in data acquisition, data storage, connectivity, and analytics have driven implementation of these smart technologies in manufacturing companies.
- However, the key success factors are far beyond merely the investment in technology.
- This is a revolution. To succeed, companies need to take five steps before embarking on this journey.

1. People First

- Don't forget about the systems already in place.
- Employees should understand and accept the need for the change and how they will be contributing to it.
- Actions needed to put people first:
 - Training and education of employees.
 - Incentivizing the rollout.
 - Carrying out activities to promote the transformational intent through clear and widespread communication.

2. Clarify 'Why'

- Don't get caught up in the 'what' and 'how' of digital transformation without addressing the 'why'.
- Set clear objectives.
- Have a full understanding at the organizational level of what the end goals look like.

3. Establish a Common Understanding

- Beware of the buzz words that people do not understand:
 - IIoT, Smart Factory, ML, etc.
- Ensure no confusion in people's minds about what exactly digitalization means.

4. Create Success Stories

- Pick quick wins to gain knowledge and confidence.
- Think big, but start small.
- Take up a 'pilot project' that requires minimum resources and has a very high probability of success.
- One success story can be 'snow-balled' into many more.

5. Equip the Team for the Change

- It is normal for employees to be nervous about the change.
 - Fear of unknown
 - Belief that there is no personal reward
 - A clash of KPIs
 - A climate of distrust
 - Fear of failure
 - Worries about job security
- Leadership must address adequately these concerns by providing appropriate support and training.

Recap – Five Steps Before You Take the Digitalization Journey

- 1. People First.
- 2. Clarify 'Why'.
- 3. Establish a Common Understanding.
- 4. Create Success Stories.
- 5. Equip the Team for the Change

Thank You!

